Automation, Production Systems, and Computer-Integrated Manufacturing Mikell P. Groover Fifth Edition ## Contents Chapter 3.1 3.2 Preface xi | Chapter | 1 | INTRODUCTION 1.1 Production Systems 2 1.2 Automation in Production Systems 6 1.3 Manual Labor in Production Systems 11 1.4 Automation Principles and Strategies 13 1.5 About This Book 18 | |---------|---|--| | PART I: | | OVERVIEW OF MANUFACTURING | | Chapter | 2 | MANUFACTURING OPERATIONS 2.1 Manufacturing Industries and Products 25 2.2 Manufacturing Operations 28 2.3 Production Facilities 32 2.4 Product/Production Relationships 37 | 3 MANUFACTURING METRICS AND ECONOMICS Manufacturing Costs 62 Production Performance Metrics 47 | | | 6.1 Sensors 128
6.2 Actuators 132 | |---------|---|--| | | | 6.3 Analog–Digital Conversions 1456.4 Input/Output Devices for Discrete Data 153 | | Chapter | 7 | COMPUTER NUMERICAL CONTROL | | | | 7.1 Fundamentals of NC Technology 160 7.2 Computers and Numerical Control 166 7.3 Applications of NC 171 7.4 Analysis of Positioning Systems 178 7.5 NC Part Programming 186 7.6 CNC Trends and Developments 197 APPENDIX 7A: Coding for Manual Part Program | | CHAPTER | 8 | INDUSTRIAL ROBOTICS | | | | Robot Anatomy and Related Attributes 21 Robot Control Systems 224 End Effectors 226 Applications of Industrial Robots 227 Economic Justification of Industrial Robots Robot Programming 237 Robot Accuracy and Repeatability 244 | | Chapter | 9 | DISCRETE CONTROL AND PROGRAMMABLE LO | | | | 9.1 Discrete Process Control 253 9.2 Ladder Logic Diagrams 261 9.3 Programmable Logic Controllers 265 | 9.4 Personal Computers and Programmable Aut Chapter 6 HARDWARE COMPONENTS FOR AUTOMATION | PART IV: | MANUFACTURING SYSTEMS | |------------|--| | Chapter 13 | OVERVIEW OF MANUFACTURING SYSTEMS 13.1 Components of a Manufacturing System 35 13.2 Types of Manufacturing Systems 363 | | Chapter 14 | SINGLE-STATION MANUFACTURING CELLS 14.1 Single-Station Manned Cells 371 14.2 Single-Station Automated Cells 372 14.3 Applications of Single-Station Cells 383 14.4 Analysis of Single-Station Cells 385 | | Chapter 15 | MULTI-STATION MANUFACTURING SYSTEMS: MA
15.1 Fundamentals of Manual Assembly Lines 3
15.2 Analysis of Single-Model Assembly Lines 4
15.3 Line Balancing Algorithms 411
15.4 Workstation Details 417
15.5 Other Considerations in Assembly Line Desi
15.6 Alternative Assembly Systems 422
APPENDIX 15A: Batch-Model and Mixed-Model | | Chapter 16 | MULTI-STATION MANUFACTURING SYSTEMS: AUTO
16.1 Fundamentals of Automated Production Line
16.2 Applications of Automated Production Lines
16.3 Analysis of Transfer Lines 460
APPENDIX 16A: Transfer Lines with Internal St | 12.3 Radio Frequency Identification 352 12.4 Other AIDC Technologies 355